INTRODUCTORY ECONOMETRICS – REPLICATING EXAMPLES

Chapter 3. Multiple Regression – Examples

-------------------------------------------------------------------------------------
      name:  SN
       log:  ~Wooldridge\intro-econx\iexample3.smcl
  log type:  smcl
 opened on:   5 Jan 2019, 23:46:37
. **********************************************
. * Solomon Negash - Replicating Examples
. * Wooldridge, Jeffery (2016). Introductory Econometrics: A Modern Approach. 6th ed.  
. * STATA Program, version 15.1. 

. * Chapter 3  - Multiple Regression Analysis 
. * Computer Exercises (Examples)
. ******************** SETUP *********************

. *example3.1  Determinants of College GPA
. u gpa1.dta, clear
. eststo: reg colG hsGP ACT

      Source |       SS           df       MS      Number of obs   =       141
-------------+----------------------------------   F(2, 138)       =     14.78
       Model |  3.42365506         2  1.71182753   Prob > F        =    0.0000
    Residual |  15.9824444       138  .115814814   R-squared       =    0.1764
-------------+----------------------------------   Adj R-squared   =    0.1645
       Total |  19.4060994       140  .138614996   Root MSE        =    .34032
------------------------------------------------------------------------------
      colGPA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       hsGPA |   .4534559   .0958129     4.73   0.000     .2640047    .6429071
         ACT |    .009426   .0107772     0.87   0.383    -.0118838    .0307358
       _cons |   1.286328   .3408221     3.77   0.000      .612419    1.960237
------------------------------------------------------------------------------
(est3 stored)

. eststo: reg colG  ACT
      Source |       SS           df       MS      Number of obs   =       141
-------------+----------------------------------   F(1, 139)       =      6.21
       Model |  .829558811         1  .829558811   Prob > F        =    0.0139
    Residual |  18.5765406       139  .133644177   R-squared       =    0.0427
-------------+----------------------------------   Adj R-squared   =    0.0359
       Total |  19.4060994       140  .138614996   Root MSE        =    .36557
------------------------------------------------------------------------------
      colGPA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         ACT |    .027064   .0108628     2.49   0.014     .0055862    .0485417
       _cons |   2.402979   .2642027     9.10   0.000     1.880604    2.925355
------------------------------------------------------------------------------
(est4 stored)

. esttab, se
------------------------------------------------
             (1)             (2)                
            colGPA          colGPA             
------------------------------------------------
hsGPA       0.453***                
            (0.0958)                   
ACT         0.00943          0.0271*  
            (0.0108)        (0.0109)   
_cons       1.286***        2.403***
            (0.341)         (0.264)   
--------------------------------------------------
N           141             141   
--------------------------------------------------
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001
. est clear

. *example3.2. Wage equation
. u wage1.dta, clear
. reg lwage educ exper tenure

      Source |       SS           df       MS      Number of obs   =       526
-------------+----------------------------------   F(3, 522)       =     80.39
       Model |  46.8741776         3  15.6247259   Prob > F        =    0.0000
    Residual |  101.455574       522  .194359337   R-squared       =    0.3160
-------------+----------------------------------   Adj R-squared   =    0.3121
       Total |  148.329751       525   .28253286   Root MSE        =    .44086
-----------------------------------------------------------------------------
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        educ |    .092029   .0073299    12.56   0.000     .0776292    .1064288
       exper |   .0041211   .0017233     2.39   0.017     .0007357    .0075065
      tenure |   .0220672   .0030936     7.13   0.000     .0159897    .0281448
       _cons |   .2843595   .1041904     2.73   0.007     .0796756    .4890435
------------------------------------------------------------------------------

. *example3.3. Participation in 401(k) pension plans 
. u 401k.dta, clear
. reg prate mrate age

      Source |       SS           df       MS      Number of obs   =     1,534
-------------+----------------------------------   F(2, 1531)      =     77.79
       Model |  39517.1118         2  19758.5559   Prob > F        =    0.0000
    Residual |  388868.428     1,531   253.99636   R-squared       =    0.0922
-------------+----------------------------------   Adj R-squared   =    0.0911
       Total |  428385.539     1,533  279.442622   Root MSE        =    15.937
------------------------------------------------------------------------------
       prate |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       mrate |   5.521289   .5258844    10.50   0.000     4.489759    6.552819
         age |   .2431466   .0446999     5.44   0.000     .1554671     .330826
       _cons |   80.11905   .7790208   102.85   0.000     78.59099    81.64711
------------------------------------------------------------------------------

. *example3.4. Determinants of College GPA, R-squared. See example3.1.
. u gpa1.dta, clear
. reg colG hsGP ACT

      Source |       SS           df       MS      Number of obs   =       141
-------------+----------------------------------   F(2, 138)       =     14.78
       Model |  3.42365506         2  1.71182753   Prob > F        =    0.0000
    Residual |  15.9824444       138  .115814814   R-squared       =    0.1764
-------------+----------------------------------   Adj R-squared   =    0.1645
       Total |  19.4060994       140  .138614996   Root MSE        =    .34032
------------------------------------------------------------------------------
      colGPA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       hsGPA |   .4534559   .0958129     4.73   0.000     .2640047    .6429071
         ACT |    .009426   .0107772     0.87   0.383    -.0118838    .0307358
       _cons |   1.286328   .3408221     3.77   0.000      .612419    1.960237
------------------------------------------------------------------------------

. *example3.5 Arrest records
. u crime1.dta, clear
. eststo: reg narr86 pcnv  ptime86 qemp86

      Source |       SS           df       MS      Number of obs   =     2,725
-------------+----------------------------------   F(3, 2721)      =     39.10
       Model |  83.0741941         3   27.691398   Prob > F        =    0.0000
    Residual |  1927.27296     2,721  .708295833   R-squared       =    0.0413
-------------+----------------------------------   Adj R-squared   =    0.0403
       Total |  2010.34716     2,724  .738012906   Root MSE        =     .8416
------------------------------------------------------------------------------
      narr86 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        pcnv |  -.1499274   .0408653    -3.67   0.000    -.2300576   -.0697973
     ptime86 |  -.0344199    .008591    -4.01   0.000    -.0512655   -.0175744
      qemp86 |   -.104113   .0103877   -10.02   0.000    -.1244816   -.0837445
       _cons |   .7117715   .0330066    21.56   0.000      .647051     .776492
------------------------------------------------------------------------------
(est1 stored)

. eststo: reg narr86 pcnv avgsen ptime86 qemp86
      Source |       SS           df       MS      Number of obs   =     2,725
-------------+----------------------------------   F(4, 2720)      =     29.96
       Model |  84.8242895         4  21.2060724   Prob > F        =    0.0000
    Residual |  1925.52287     2,720  .707912819   R-squared       =    0.0422
-------------+----------------------------------   Adj R-squared   =    0.0408
       Total |  2010.34716     2,724  .738012906   Root MSE        =    .84138
------------------------------------------------------------------------------
      narr86 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        pcnv |  -.1508319   .0408583    -3.69   0.000    -.2309484   -.0707154
      avgsen |   .0074431   .0047338     1.57   0.116    -.0018392    .0167254
     ptime86 |  -.0373908   .0087941    -4.25   0.000    -.0546345   -.0201471
      qemp86 |   -.103341   .0103965    -9.94   0.000    -.1237268   -.0829552
       _cons |   .7067565   .0331515    21.32   0.000     .6417519     .771761
------------------------------------------------------------------------------
(est2 stored)

. esttab, se r2
--------------------------------------------
                      (1)             (2)   
                   narr86          narr86   
--------------------------------------------
pcnv               -0.150***       -0.151***
                 (0.0409)        (0.0409)   
ptime86           -0.0344***      -0.0374***
                (0.00859)       (0.00879)   
qemp86             -0.104***       -0.103***
                 (0.0104)        (0.0104)   
avgsen                            0.00744   
                                (0.00473)   
_cons               0.712***        0.707***
                 (0.0330)        (0.0332)   
--------------------------------------------
N                    2725            2725   
R-sq                0.041           0.042   
--------------------------------------------
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001
. est clear

. *example3.6 Wage equation
. u wage1.dta, clear
. reg lwage educ 

      Source |       SS           df       MS      Number of obs   =       526
-------------+----------------------------------   F(1, 524)       =    119.58
       Model |  27.5606288         1  27.5606288   Prob > F        =    0.0000
    Residual |  120.769123       524  .230475425   R-squared       =    0.1858
-------------+----------------------------------   Adj R-squared   =    0.1843
       Total |  148.329751       525   .28253286   Root MSE        =    .48008
------------------------------------------------------------------------------
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        educ |   .0827444   .0075667    10.94   0.000     .0678796    .0976091
       _cons |   .5837727   .0973358     6.00   0.000     .3925563    .7749891
------------------------------------------------------------------------------

. log close
      name:  SN
       log:  ~Wooldridge\intro-econx\iexample3.smcl
  log type:  smcl
 closed on:   5 Jan 2019, 23:46:37
-------------------------------------------------------------------------------------




0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *

Recent
Comments

Archives

RSS Solomon Negash

  • IPIS Briefing September 2021 – Ethiopia-Tigray Conflict 2021-10-30
    Source: IPIS Briefing September 2021 The IPIS briefing offers a selection of articles, news and updates on natural resources, armed conflict, Business & Human Rights and arms trade. Every month, an editorial and related publications shed a light on a specific topic in IPIS’ areas of research. State-Sponsored Cover-Up of the War on Tigray | September 30, 2021 […]
    Solomon
  • IPIS Briefing August 2021 – Ethiopia-Tigray Conflict 2021-09-19
    Source: IPIS Briefing August 2021 The IPIS briefing offers a selection of articles, news and updates on natural resources, armed conflict, Business & Human Rights and arms trade. Every month, an editorial and related publications shed a light on a specific topic in IPIS’ areas of research. U.S. Response To The Human Rights Crisis In Ethiopia’s […]
    Solomon
  • IPIS Briefing June/July 2021 – Ethiopia-Tigray Conflict 2021-09-19
    Source: IPIS Briefing June/July 2021 The IPIS briefing offers a selection of articles, news and updates on natural resources, armed conflict, Business & Human Rights and arms trade. Every month, an editorial and related publications shed a light on a specific topic in IPIS’ areas of research.  Ethiopia accuses international community of ‘double standards’ in Tigray […]
    Solomon
  • IPIS Briefing May 2021 – Ethiopia-Tigray Conflict 2021-06-08
    Source: IPIS Briefing May 2021: “Ethiopia Tigray crisis – Warnings of genocide and famine” The IPIS briefing offers a selection of articles, news and updates on natural resources, armed conflict, Business & Human Rights and arms trade. Every month, an editorial and related publications shed a light on a specific topic in IPIS’ areas of research. […]
    Solomon
  • Ethiopia: Contemplating Elections and the Prospects for Peaceful Reform 2021-05-14
    Source: USIP  April 29, 2021 |  Amid ongoing violence across the country, the vote may offer opportunities to support political dialogue and decrease polarization. Ethiopia is approaching parliamentary elections on June 5. This will be the first vote since the process of reform launched in 2018 by Prime Minister Abiy Ahmed, and the stakes are […]
    Solomon
  • IPIS Briefing April 2021 – Ethiopia-Tigray Conflict 2021-05-14
    Source: IPIS Briefing April 2021: “In Tigray, Sexual Violence Has Become A Weapon Of War” The IPIS briefing offers a selection of articles, news and updates on natural resources, armed conflict, Business & Human Rights and arms trade. Every month, an editorial and related publications shed a light on a specific topic in IPIS’ areas […]
    Solomon
  • IPIS Briefing March 2021 – Ethiopia-Tigray Conflict 2021-04-10
    Source: IPIS Briefing March 2021 Ethiopian police arrest 359 for suspected murder and illicit arms trade | 29 March 2021 | Xinhua The Ethiopian Federal Police Commission disclosed the arrest of 359 people on suspicion of murder, illicit arms trade, money laundering and auto theft, the state-affiliated Fana Broadcasting Corporate reported Sunday. Scale of Tigray horror […]
    Solomon
  • FP – The U.N. Must End the Horrors of Ethiopia’s Tigray War 2021-03-08
    Foreign Policy | Recent human rights investigations confirm the atrocities that journalists reported in November. A strong multilateral push can force an Eritrean withdrawal and put the region on the path to peace. In November 2020, as war broke out in Ethiopia’s northern Tigray region, the scale of the suffering was already apparent to anyone […]
    Solomon
  • Ethiopia: Eritrean Forces Massacre Tigray Civilians – HRW 2021-03-07
    HRW | UN Should Urgently Investigate Atrocities by All Parties (Nairobi) – Eritrean armed forces massacred scores of civilians, including children as young as 13, in the historic town of Axum in Ethiopia’s Tigray region in November 2020, Human Rights Watch said today. The United Nations should urgently establish an independent inquiry into war crimes […]
    Solomon