INTRODUCTORY ECONOMETRICS – REPLICATING EXAMPLES

Chapter 7 – Examples

------------------------------------------------------------------------------------------
      name:  SN
       log:  ~Wooldridge\intro-econx\iexample7.smcl
  log type:  smcl
 opened on:   9 Jan 2019, 00:27:17
  **********************************************
  * Solomon Negash - Replicating Examples
  * Wooldridge (2016). Introductory Econometrics: A Modern Approach. 6th ed.  
  * STATA Program, version 15.1. 

  * Chapter 7  - Multiple Regression Analysis with Qualitative Information
  * Computer Exercises (Examples)
  ******************** SETUP *********************

  *Example7.1. Hourly wage equation
  u wage1, clear
  reg wage female educ exper tenure
      Source |       SS           df       MS      Number of obs   =       526
-------------+----------------------------------   F(4, 521)       =     74.40
       Model |  2603.10658         4  650.776644   Prob > F        =    0.0000
    Residual |  4557.30771       521   8.7472317   R-squared       =    0.3635
-------------+----------------------------------   Adj R-squared   =    0.3587
       Total |  7160.41429       525  13.6388844   Root MSE        =    2.9576
------------------------------------------------------------------------------
        wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      female |  -1.810852   .2648252    -6.84   0.000    -2.331109   -1.290596
        educ |   .5715048   .0493373    11.58   0.000     .4745802    .6684293
       exper |   .0253959   .0115694     2.20   0.029     .0026674    .0481243
      tenure |   .1410051   .0211617     6.66   0.000     .0994323    .1825778
       _cons |  -1.567939   .7245511    -2.16   0.031    -2.991339    -.144538
------------------------------------------------------------------------------
  *b1 measures the average wage difference between men and women with the same level of educ,
exper and tenure. 
  reg wage female 
      Source |       SS           df       MS      Number of obs   =       526
-------------+----------------------------------   F(1, 524)       =     68.54
       Model |  828.220467         1  828.220467   Prob > F        =    0.0000
    Residual |  6332.19382       524  12.0843394   R-squared       =    0.1157
-------------+----------------------------------   Adj R-squared   =    0.1140
       Total |  7160.41429       525  13.6388844   Root MSE        =    3.4763
------------------------------------------------------------------------------
        wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      female |   -2.51183   .3034092    -8.28   0.000    -3.107878   -1.915782
       _cons |   7.099489   .2100082    33.81   0.000     6.686928     7.51205
------------------------------------------------------------------------------
  *b0 is the average wage for men in the sample.

  mean wage if female==0
Mean estimation                   Number of obs   =        274
--------------------------------------------------------------
             |       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------
        wage |   7.099489   .2513666      6.604626    7.594352
--------------------------------------------------------------
  *b1 is the average wage difference between men and women, accounts no other factor

  mean wage if female==1
Mean estimation                   Number of obs   =        252
--------------------------------------------------------------
             |       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------
        wage |   4.587659   .1593349      4.273855    4.901462
--------------------------------------------------------------
  display 4.5877 - 7.0995
-2.5118

  *Example7.2. Effect of computer ownership on collage GPA
  u gpa1, clear
  reg colGPA PC hsGPA ACT
      Source |       SS           df       MS      Number of obs   =       141
-------------+----------------------------------   F(3, 137)       =     12.83
       Model |  4.25741863         3  1.41913954   Prob > F        =    0.0000
    Residual |  15.1486808       137  .110574313   R-squared       =    0.2194
-------------+----------------------------------   Adj R-squared   =    0.2023
       Total |  19.4060994       140  .138614996   Root MSE        =    .33253
------------------------------------------------------------------------------
      colGPA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          PC |   .1573092   .0572875     2.75   0.007     .0440271    .2705913
       hsGPA |   .4472417   .0936475     4.78   0.000     .2620603     .632423
         ACT |    .008659   .0105342     0.82   0.413    -.0121717    .0294897
       _cons |    1.26352   .3331255     3.79   0.000     .6047871    1.922253
------------------------------------------------------------------------------
  test hsGPA ACT
 ( 1)  hsGPA = 0
 ( 2)  ACT = 0
       F(  2,   137) =   14.86
            Prob > F =    0.0000

  reg colGPA PC 
      Source |       SS           df       MS      Number of obs   =       141
-------------+----------------------------------   F(1, 139)       =      7.31
       Model |  .970092892         1  .970092892   Prob > F        =    0.0077
    Residual |  18.4360066       139  .132633141   R-squared       =    0.0500
-------------+----------------------------------   Adj R-squared   =    0.0432
       Total |  19.4060994       140  .138614996   Root MSE        =    .36419
------------------------------------------------------------------------------
      colGPA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
          PC |   .1695168   .0626805     2.70   0.008     .0455864    .2934472
       _cons |   2.989412   .0395018    75.68   0.000      2.91131    3.067514
------------------------------------------------------------------------------

  mean colGPA if PC==0
Mean estimation                   Number of obs   =         85
--------------------------------------------------------------
             |       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------
      colGPA |   2.989412   .0348676      2.920074     3.05875
--------------------------------------------------------------

  mean colGPA if PC==1
Mean estimation                   Number of obs   =         56
--------------------------------------------------------------
             |       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------
      colGPA |   3.158929   .0562795      3.046142    3.271715
--------------------------------------------------------------
  display  3.158929 - 2.989412
 169517

  *Example7.3. Effect of Training Grants on hours of training
  u jtrain, clear
  reg hrsemp grant lsales lemploy if year==1988
      Source |       SS           df       MS      Number of obs   =       105
-------------+----------------------------------   F(3, 101)       =     10.44
       Model |  18622.7268         3  6207.57559   Prob > F        =    0.0000
    Residual |  60031.0921       101  594.367249   R-squared       =    0.2368
-------------+----------------------------------   Adj R-squared   =    0.2141
       Total |  78653.8189       104   756.28672   Root MSE        =     24.38
------------------------------------------------------------------------------
      hrsemp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       grant |    26.2545   5.591765     4.70   0.000     15.16194    37.34705
      lsales |  -.9845809   3.539903    -0.28   0.781    -8.006797    6.037635
     lemploy |  -6.069871   3.882893    -1.56   0.121    -13.77249    1.632744
       _cons |   46.66508    43.4121     1.07   0.285    -39.45284     132.783
------------------------------------------------------------------------------

  *Example7.4. Housing price regression
  u hprice1, clear
  d llotsize lsqrft bdrm colonial
              storage   display    value
variable name   type    format     label      variable label
------------------------------------------------------------------------------------------
llotsize        float   %9.0g                 log(lotsize)
lsqrft          float   %9.0g                 log(sqrft)
bdrms           byte    %9.0g                 number of bdrms
colonial        byte    %9.0g                 =1 if home is colonial style

  reg lprice llotsize lsqrft bdrm colonial
      Source |       SS           df       MS      Number of obs   =        88
-------------+----------------------------------   F(4, 83)        =     38.38
       Model |  5.20397919         4   1.3009948   Prob > F        =    0.0000
    Residual |  2.81362433        83  .033899088   R-squared       =    0.6491
-------------+----------------------------------   Adj R-squared   =    0.6322
       Total |  8.01760352        87  .092156362   Root MSE        =    .18412
------------------------------------------------------------------------------
      lprice |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    llotsize |   .1678189   .0381807     4.40   0.000     .0918791    .2437587
      lsqrft |   .7071931    .092802     7.62   0.000     .5226138    .8917725
       bdrms |   .0268305   .0287236     0.93   0.353    -.0302995    .0839605
    colonial |   .0537962   .0447732     1.20   0.233     -.035256    .1428483
       _cons |  -1.349589    .651041    -2.07   0.041    -2.644483   -.0546947
------------------------------------------------------------------------------

  *Example7.5. Hourly wage equation
  u wage1, clear
  reg lwage female educ exper* tenur*
      Source |       SS           df       MS      Number of obs   =       526
-------------+----------------------------------   F(6, 519)       =     68.18
       Model |  65.3791009         6  10.8965168   Prob > F        =    0.0000
    Residual |  82.9506505       519  .159827843   R-squared       =    0.4408
-------------+----------------------------------   Adj R-squared   =    0.4343
       Total |  148.329751       525   .28253286   Root MSE        =    .39978
------------------------------------------------------------------------------
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      female |   -.296511   .0358055    -8.28   0.000    -.3668524   -.2261696
        educ |   .0801967   .0067573    11.87   0.000     .0669217    .0934716
       exper |   .0294324   .0049752     5.92   0.000     .0196585    .0392063
     expersq |  -.0005827   .0001073    -5.43   0.000    -.0007935   -.0003719
      tenure |   .0317139   .0068452     4.63   0.000     .0182663    .0451616
     tenursq |  -.0005852   .0002347    -2.49   0.013    -.0010463   -.0001241
       _cons |    .416691   .0989279     4.21   0.000     .2223425    .6110394
------------------------------------------------------------------------------
  display exp(-.297) -1 
-.25695599

  *Example7.6. Hourly wage equation
  u wage1, clear
  g marrmale = (female==0 & married==1)
  g marrfem = (female==1 & married==1)
  g singfem = (female==1 & married==0)
  g singmen = (female==0 & married==0)
  reg lwage marrmale marrfem singfem educ exper* tenur* 
      Source |       SS           df       MS      Number of obs   =       526
-------------+----------------------------------   F(8, 517)       =     55.25
       Model |  68.3617623         8  8.54522029   Prob > F        =    0.0000
    Residual |  79.9679891       517  .154676961   R-squared       =    0.4609
-------------+----------------------------------   Adj R-squared   =    0.4525
       Total |  148.329751       525   .28253286   Root MSE        =    .39329
------------------------------------------------------------------------------
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    marrmale |   .2126757   .0553572     3.84   0.000      .103923    .3214284
     marrfem |  -.1982676   .0578355    -3.43   0.001     -.311889   -.0846462
     singfem |  -.1103502   .0557421    -1.98   0.048     -.219859   -.0008414
        educ |   .0789103   .0066945    11.79   0.000     .0657585     .092062
       exper |   .0268006   .0052428     5.11   0.000     .0165007    .0371005
     expersq |  -.0005352   .0001104    -4.85   0.000    -.0007522   -.0003183
      tenure |   .0290875    .006762     4.30   0.000     .0158031    .0423719
     tenursq |  -.0005331   .0002312    -2.31   0.022    -.0009874   -.0000789
       _cons |   .3213781    .100009     3.21   0.001     .1249041    .5178521
------------------------------------------------------------------------------

  reg lwage marrmale singmen singfem educ exper* tenur* 
      Source |       SS           df       MS      Number of obs   =       526
-------------+----------------------------------   F(8, 517)       =     55.25
       Model |  68.3617623         8  8.54522029   Prob > F        =    0.0000
    Residual |  79.9679891       517  .154676961   R-squared       =    0.4609
-------------+----------------------------------   Adj R-squared   =    0.4525
       Total |  148.329751       525   .28253286   Root MSE        =    .39329
------------------------------------------------------------------------------
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    marrmale |   .4109433   .0457709     8.98   0.000     .3210234    .5008631
     singmen |   .1982676   .0578355     3.43   0.001     .0846462     .311889
     singfem |   .0879174   .0523481     1.68   0.094    -.0149238    .1907586
        educ |   .0789103   .0066945    11.79   0.000     .0657585     .092062
       exper |   .0268006   .0052428     5.11   0.000     .0165007    .0371005
     expersq |  -.0005352   .0001104    -4.85   0.000    -.0007522   -.0003183
      tenure |   .0290875    .006762     4.30   0.000     .0158031    .0423719
     tenursq |  -.0005331   .0002312    -2.31   0.022    -.0009874   -.0000789
       _cons |   .1231105   .1057937     1.16   0.245    -.0847279    .3309488
------------------------------------------------------------------------------

  *Example7.7. Effects of physical attractiveness on wage
  use beauty, clear
(Written by R.              )
  /* if the file is not available in your folder, export it from R using the following script
 (assuming you have R installed in your PC, otherwise you may skip this):  
install.packages("wooldridge")
library(wooldridge)
data("beauty") 
require(foreign)
write.dta(beauty, "YOUR CURRENT DIRECTORY/beauty.dta")
*/
  reg lwage belavg abvavg educ exper* union married black south good if female==0
      Source |       SS           df       MS      Number of obs   =       824
-------------+----------------------------------   F(10, 813)      =     27.82
       Model |   61.226435        10   6.1226435   Prob > F        =    0.0000
    Residual |  178.934819       813  .220092028   R-squared       =    0.2549
-------------+----------------------------------   Adj R-squared   =    0.2458
       Total |  240.161253       823  .291811973   Root MSE        =    .46914
------------------------------------------------------------------------------
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      belavg |  -.1647273   .0529083    -3.11   0.002    -.2685803   -.0608742
      abvavg |  -.0249691   .0377393    -0.66   0.508    -.0990471    .0491089
        educ |   .0606609   .0065805     9.22   0.000     .0477442    .0735776
       exper |    .046392   .0057854     8.02   0.000     .0350359     .057748
     expersq |  -.0007263   .0001234    -5.88   0.000    -.0009686    -.000484
       union |   .1485369    .036234     4.10   0.000     .0774136    .2196602
     married |   .0643684   .0442547     1.45   0.146    -.0224985    .1512353
       black |  -.2569891   .0756565    -3.40   0.001    -.4054942   -.1084839
       south |   .0852807    .042827     1.99   0.047     .0012161    .1693452
    goodhlth |   .0011008   .0701752     0.02   0.987    -.1366451    .1388467
       _cons |   .4777672    .120344     3.97   0.000     .2415456    .7139888
------------------------------------------------------------------------------

  reg lwage belavg abvavg educ exper* union married black south good if female==1
      Source |       SS           df       MS      Number of obs   =       436
-------------+----------------------------------   F(10, 425)      =     16.40
       Model |  33.3026496        10  3.33026496   Prob > F        =    0.0000
    Residual |  86.3098141       425  .203081915   R-squared       =    0.2784
-------------+----------------------------------   Adj R-squared   =    0.2614
       Total |  119.612464       435  .274971181   Root MSE        =    .45065
------------------------------------------------------------------------------
       lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      belavg |  -.1141864    .066479    -1.72   0.087    -.2448548    .0164821
      abvavg |   .0685726   .0490607     1.40   0.163    -.0278592    .1650045
        educ |   .0756932   .0089025     8.50   0.000     .0581947    .0931917
       exper |   .0294842   .0071753     4.11   0.000     .0153807    .0435877
     expersq |  -.0004941   .0001756    -2.81   0.005    -.0008393   -.0001489
       union |   .2927388    .053905     5.43   0.000     .1867852    .3986925
     married |  -.0622614    .044332    -1.40   0.161    -.1493986    .0248759
       black |   .1437631   .0688923     2.09   0.038     .0083511    .2791751
       south |    .008481   .0595609     0.14   0.887    -.1085897    .1255516
    goodhlth |   .1130952    .081308     1.39   0.165    -.0467206     .272911
       _cons |   -.077281   .1441897    -0.54   0.592    -.3606948    .2061328
------------------------------------------------------------------------------

  *Example7.8. Effects of law school rankings on starting salaries
  u lawsch85, clear
  g r61_100= (rank>=61 & rank<=100)
  reg lsalary top10 r11_25 r26_40 r41_60 r61_100 LSAT GPA llibvol lcost
      Source |       SS           df       MS      Number of obs   =       136
-------------+----------------------------------   F(9, 126)       =    143.20
       Model |  9.45224101         9    1.050249   Prob > F        =    0.0000
    Residual |  .924110799       126  .007334213   R-squared       =    0.9109
-------------+----------------------------------   Adj R-squared   =    0.9046
       Total |  10.3763518       135  .076861865   Root MSE        =    .08564
------------------------------------------------------------------------------
     lsalary |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       top10 |   .6995659    .053492    13.08   0.000     .5937069    .8054249
      r11_25 |   .5935433     .03944    15.05   0.000     .5154926     .671594
      r26_40 |   .3750763   .0340812    11.01   0.000     .3076305     .442522
      r41_60 |    .262819   .0279621     9.40   0.000     .2074829    .3181551
     r61_100 |   .1315949   .0210419     6.25   0.000     .0899537    .1732361
        LSAT |   .0056909    .003063     1.86   0.066    -.0003707    .0117525
         GPA |   .0137257   .0741919     0.19   0.854    -.1330979    .1605494
     llibvol |   .0363619   .0260165     1.40   0.165     -.015124    .0878478
       lcost |   .0008411    .025136     0.03   0.973    -.0489024    .0505846
       _cons |   9.165294   .4114243    22.28   0.000     8.351098    9.979491
------------------------------------------------------------------------------
  test LSAT GPA llibvol lcost
 ( 1)  LSAT = 0
 ( 2)  GPA = 0
 ( 3)  llibvol = 0
 ( 4)  lcost = 0
       F(  4,   126) =    2.39
            Prob > F =    0.0547
  display exp(0.6996)-1 
1.0129474

  *Example7.9. Effects of computer usage on wages
  *No data. Link to original article - Kruger 1995, https://www.nber.org/papers/w3858.pdf
  *Example7.10. Log hourly wage equation
  u wage1, clear
  reg lwage c.female##c.educ exper* tenur*
      Source |       SS           df       MS      Number of obs   =       526
-------------+----------------------------------   F(7, 518)       =     58.37
       Model |  65.4081534         7  9.34402192   Prob > F        =    0.0000
    Residual |   82.921598       518  .160080305   R-squared       =    0.4410
-------------+----------------------------------   Adj R-squared   =    0.4334
       Total |  148.329751       525   .28253286   Root MSE        =     .4001
---------------------------------------------------------------------------------
          lwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
----------------+----------------------------------------------------------------
         female |  -.2267886   .1675394    -1.35   0.176    -.5559289    .1023517
           educ |   .0823692   .0084699     9.72   0.000     .0657296    .0990088
c.female#c.educ |  -.0055645   .0130618    -0.43   0.670    -.0312252    .0200962
          exper |   .0293366   .0049842     5.89   0.000      .019545    .0391283
        expersq |  -.0005804   .0001075    -5.40   0.000    -.0007916   -.0003691
         tenure |   .0318967    .006864     4.65   0.000      .018412    .0453814
        tenursq |    -.00059   .0002352    -2.51   0.012     -.001052    -.000128
          _cons |    .388806   .1186871     3.28   0.001     .1556388    .6219732
---------------------------------------------------------------------------------
  test female c.female#c.educ 
 ( 1)  female = 0
 ( 2)  c.female#c.educ = 0
       F(  2,   518) =   34.33
            Prob > F =    0.0000

  *Example7.11. Effects of race on baseball player salaries
  u mlb1, clear
  reg lsalary years gamesyr bavg hrunsyr rbisyr runsyr fldperc allstar black hispan c.blac
> k#c.percblck c.hispan#c.perchisp if percblck !=.
      Source |       SS           df       MS      Number of obs   =       330
-------------+----------------------------------   F(12, 317)      =     46.48
       Model |  283.782162        12  23.6485135   Prob > F        =    0.0000
    Residual |    161.2793       317  .508767508   R-squared       =    0.6376
-------------+----------------------------------   Adj R-squared   =    0.6239
       Total |  445.061462       329   1.3527704   Root MSE        =    .71328
-------------------------------------------------------------------------------------
            lsalary |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
--------------------+----------------------------------------------------------------
              years |   .0673458   .0128915     5.22   0.000     .0419822    .0927094
            gamesyr |   .0088778   .0033837     2.62   0.009     .0022205    .0155352
               bavg |   .0009451   .0015133     0.62   0.533    -.0020322    .0039225
            hrunsyr |   .0146206   .0164522     0.89   0.375    -.0177488      .04699
             rbisyr |   .0044938    .007575     0.59   0.553    -.0104098    .0193974
             runsyr |   .0072029   .0045671     1.58   0.116    -.0017827    .0161885
            fldperc |   .0010865   .0021195     0.51   0.609    -.0030835    .0052566
            allstar |   .0075307   .0028735     2.62   0.009     .0018771    .0131842
              black |   -.198008   .1254968    -1.58   0.116    -.4449199    .0489038
             hispan |  -.1900089   .1530902    -1.24   0.215    -.4912101    .1111923
 c.black#c.percblck |   .0124513   .0049628     2.51   0.013     .0026872    .0222154
c.hispan#c.perchisp |   .0200863   .0097933     2.05   0.041     .0008182    .0393543
              _cons |   10.34368   2.182538     4.74   0.000     6.049594    14.63777
-------------------------------------------------------------------------------------
  test black hispan c.black#c.percblck c.hispan#c.perchisp 
 ( 1)  black = 0
 ( 2)  hispan = 0
 ( 3)  c.black#c.percblck = 0
 ( 4)  c.hispan#c.perchisp = 0
       F(  4,   317) =    2.65
            Prob > F =    0.0335

  reg lsalary years gamesyr bavg hrunsyr rbisyr runsyr fldperc allstar if percblck !=.
      Source |       SS           df       MS      Number of obs   =       330
-------------+----------------------------------   F(8, 321)       =     67.02
       Model |  278.393524         8  34.7991905   Prob > F        =    0.0000
    Residual |  166.667938       321   .51921476   R-squared       =    0.6255
-------------+----------------------------------   Adj R-squared   =    0.6162
       Total |  445.061462       329   1.3527704   Root MSE        =    .72057
------------------------------------------------------------------------------
     lsalary |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       years |   .0672522   .0129735     5.18   0.000     .0417284     .092776
     gamesyr |    .008581   .0033684     2.55   0.011     .0019541    .0152078
        bavg |    .000654   .0015022     0.44   0.664    -.0023014    .0036095
     hrunsyr |   .0140303    .016539     0.85   0.397    -.0185083    .0465689
      rbisyr |    .004629   .0076231     0.61   0.544    -.0103684    .0196265
      runsyr |   .0084125    .004502     1.87   0.063    -.0004446    .0172695
     fldperc |   .0008579   .0021373     0.40   0.688     -.003347    .0050629
     allstar |   .0068969    .002886     2.39   0.017     .0012189    .0125748
       _cons |   10.63671   2.198683     4.84   0.000      6.31106    14.96236
------------------------------------------------------------------------------

  *Equation [7.22]
  u gpa3, clear
  reg cumgpa c.female##c.sat hsperc c.female#c.hsperc tothrs c.femal#c.tothrs if spring==1
      Source |       SS           df       MS      Number of obs   =       366
-------------+----------------------------------   F(7, 358)       =     34.95
       Model |  53.5391808         7   7.6484544   Prob > F        =    0.0000
    Residual |  78.3545052       358  .218867333   R-squared       =    0.4059
-------------+----------------------------------   Adj R-squared   =    0.3943
       Total |  131.893686       365  .361352564   Root MSE        =    .46783
-----------------------------------------------------------------------------------
           cumgpa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
------------------+----------------------------------------------------------------
           female |  -.3534862   .4105293    -0.86   0.390    -1.160838    .4538659
              sat |   .0010516   .0001811     5.81   0.000     .0006955    .0014078
   c.female#c.sat |   .0007506   .0003852     1.95   0.052    -6.88e-06    .0015081
           hsperc |  -.0084516   .0013704    -6.17   0.000    -.0111465   -.0057566
c.female#c.hsperc |  -.0005498   .0031617    -0.17   0.862    -.0067676    .0056681
           tothrs |   .0023441   .0008624     2.72   0.007     .0006482    .0040401
c.female#c.tothrs |  -.0001158   .0016277    -0.07   0.943    -.0033169    .0030852
            _cons |   1.480812   .2073336     7.14   0.000     1.073067    1.888557
-----------------------------------------------------------------------------------
  test c.female#c.sat  c.female#c.hsperc  c.femal#c.tothrs 
 ( 1)  c.female#c.sat = 0
 ( 2)  c.female#c.hsperc = 0
 ( 3)  c.female#c.tothrs = 0
       F(  3,   358) =    1.53
            Prob > F =    0.2054

  *Equation [7.25]
  reg cumgpa female sat  hsperc  tothrs  if spring==1
      Source |       SS           df       MS      Number of obs   =       366
-------------+----------------------------------   F(4, 361)       =     59.74
       Model |  52.5320205         4  13.1330051   Prob > F        =    0.0000
    Residual |  79.3616656       361  .219838409   R-squared       =    0.3983
-------------+----------------------------------   Adj R-squared   =    0.3916
       Total |  131.893686       365  .361352564   Root MSE        =    .46887
------------------------------------------------------------------------------
      cumgpa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      female |   .3100975   .0586128     5.29   0.000     .1948321    .4253629
         sat |   .0012144   .0001591     7.63   0.000     .0009016    .0015272
      hsperc |  -.0084413   .0012343    -6.84   0.000    -.0108687   -.0060139
      tothrs |   .0024638   .0007291     3.38   0.001       .00103    .0038976
       _cons |   1.328541   .1798275     7.39   0.000     .9748996    1.682182
------------------------------------------------------------------------------

  *Equation [7.29]
  u mroz, clear
  reg inlf nwifeinc educ exper* age kidslt6 kidsge6
      Source |       SS           df       MS      Number of obs   =       753
-------------+----------------------------------   F(7, 745)       =     38.22
       Model |  48.8080578         7  6.97257969   Prob > F        =    0.0000
    Residual |  135.919698       745  .182442547   R-squared       =    0.2642
-------------+----------------------------------   Adj R-squared   =    0.2573
       Total |  184.727756       752  .245648611   Root MSE        =    .42713
------------------------------------------------------------------------------
        inlf |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    nwifeinc |  -.0034052   .0014485    -2.35   0.019    -.0062488   -.0005616
        educ |   .0379953    .007376     5.15   0.000      .023515    .0524756
       exper |   .0394924   .0056727     6.96   0.000     .0283561    .0506287
     expersq |  -.0005963   .0001848    -3.23   0.001    -.0009591   -.0002335
         age |  -.0160908   .0024847    -6.48   0.000    -.0209686    -.011213
     kidslt6 |  -.2618105   .0335058    -7.81   0.000    -.3275875   -.1960335
     kidsge6 |   .0130122    .013196     0.99   0.324    -.0128935    .0389179
       _cons |   .5855192    .154178     3.80   0.000     .2828442    .8881943
------------------------------------------------------------------------------

  *Example7.12. A linear probability model of arrest
  u crime1, clear
  g arr86 = (narr>0) 
  reg arr86 pcnv avgsen tottime ptime qemp 
      Source |       SS           df       MS      Number of obs   =     2,725
-------------+----------------------------------   F(5, 2719)      =     27.03
       Model |  25.8452455         5  5.16904909   Prob > F        =    0.0000
    Residual |  519.971268     2,719  .191236215   R-squared       =    0.0474
-------------+----------------------------------   Adj R-squared   =    0.0456
       Total |  545.816514     2,724   .20037317   Root MSE        =    .43731
------------------------------------------------------------------------------
       arr86 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        pcnv |  -.1624448   .0212368    -7.65   0.000    -.2040866    -.120803
      avgsen |   .0061127    .006452     0.95   0.344    -.0065385     .018764
     tottime |  -.0022616   .0049781    -0.45   0.650    -.0120229    .0074997
     ptime86 |  -.0219664   .0046349    -4.74   0.000    -.0310547   -.0128781
      qemp86 |  -.0428294   .0054046    -7.92   0.000    -.0534268   -.0322319
       _cons |   .4406154   .0172329    25.57   0.000     .4068246    .4744063
------------------------------------------------------------------------------
  test avgsen tottime
 ( 1)  avgsen = 0
 ( 2)  tottime = 0
       F(  2,  2719) =    1.06
            Prob > F =    0.3467

  *Equation [7.32]
  reg arr86 pcnv avgsen tottime ptime qemp black hispan
      Source |       SS           df       MS      Number of obs   =     2,725
-------------+----------------------------------   F(7, 2717)      =     28.41
       Model |  37.2205275         7  5.31721822   Prob > F        =    0.0000
    Residual |  508.595986     2,717  .187190278   R-squared       =    0.0682
-------------+----------------------------------   Adj R-squared   =    0.0658
       Total |  545.816514     2,724   .20037317   Root MSE        =    .43265
------------------------------------------------------------------------------
       arr86 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        pcnv |   -.152062   .0210655    -7.22   0.000     -.193368   -.1107561
      avgsen |   .0046191   .0063888     0.72   0.470    -.0079083    .0171465
     tottime |  -.0025619   .0049259    -0.52   0.603    -.0122207    .0070969
     ptime86 |  -.0236954   .0045948    -5.16   0.000     -.032705   -.0146858
      qemp86 |  -.0384737   .0054016    -7.12   0.000    -.0490653   -.0278821
       black |   .1697631   .0236738     7.17   0.000     .1233426    .2161836
      hispan |   .0961866   .0207105     4.64   0.000     .0555766    .1367965
       _cons |   .3804283   .0187272    20.31   0.000     .3437073    .4171493
------------------------------------------------------------------------------

  *Equation [7.33]
  u jtrain, clear
  reg lscrap grant lsales lemploy if year==1988
      Source |       SS           df       MS      Number of obs   =        50
-------------+----------------------------------   F(3, 46)        =      1.18
       Model |   6.8054029         3  2.26846763   Prob > F        =    0.3270
    Residual |  88.2852083        46  1.91924366   R-squared       =    0.0716
-------------+----------------------------------   Adj R-squared   =    0.0110
       Total |  95.0906112        49  1.94062472   Root MSE        =    1.3854
------------------------------------------------------------------------------
      lscrap |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       grant |  -.0517781   .4312869    -0.12   0.905    -.9199137    .8163574
      lsales |  -.4548425   .3733152    -1.22   0.229    -1.206287    .2966021
     lemploy |   .6394289   .3651366     1.75   0.087     -.095553    1.374411
       _cons |   4.986779   4.655588     1.07   0.290    -4.384433    14.35799
------------------------------------------------------------------------------

  *Equation [7.35] & [7.37]
  u fertil2, clear
  reg children age educ 
      Source |       SS           df       MS      Number of obs   =     4,361
-------------+----------------------------------   F(2, 4358)      =   2767.70
       Model |  12044.5522         2  6022.27608   Prob > F        =    0.0000
    Residual |  9482.62417     4,358  2.17591193   R-squared       =    0.5595
-------------+----------------------------------   Adj R-squared   =    0.5593
       Total |  21527.1763     4,360  4.93742577   Root MSE        =    1.4751
------------------------------------------------------------------------------
    children |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |   .1748306   .0027051    64.63   0.000     .1695273    .1801339
        educ |  -.0899397   .0059826   -15.03   0.000    -.1016686   -.0782108
       _cons |   -1.99675   .0939688   -21.25   0.000    -2.180976   -1.812523
------------------------------------------------------------------------------

  reg children age educ electric
      Source |       SS           df       MS      Number of obs   =     4,358
-------------+----------------------------------   F(3, 4354)      =   1862.83
       Model |   12090.395         3  4030.13167   Prob > F        =    0.0000
    Residual |   9419.6371     4,354  2.16344444   R-squared       =    0.5621
-------------+----------------------------------   Adj R-squared   =    0.5618
       Total |  21510.0321     4,357  4.93689055   Root MSE        =    1.4709
------------------------------------------------------------------------------
    children |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         age |   .1769991   .0027291    64.86   0.000     .1716486    .1823496
        educ |  -.0787507   .0063195   -12.46   0.000      -.09114   -.0663614
    electric |  -.3617579   .0680316    -5.32   0.000    -.4951345   -.2283813
       _cons |  -2.071091   .0947413   -21.86   0.000    -2.256832    -1.88535
------------------------------------------------------------------------------

  log close
      name:  SN
       log:  ~Wooldridge\intro-econx\iexample7.smcl
  log type:  smcl
 closed on:   9 Jan 2019, 00:27:17
------------------------------------------------------------------------------------------




Recent
Comments

Archives

RSS Solomon Negash

  • Al-Shabaab’s Attack in Ethiopia: One-off Incursion or Persistent Threat? 2022-09-15
    JamesTown.Org |  Terrorism Monitor Volume: 20 Issue: 17 Ethiopian forces in July contained and repulsed an attack conducted in the eastern part of the country by Somalia-based al-Shabaab. Fighters from the militant group entered from southwestern Somalia and targeted four border towns in Ethiopia’s Somali regional state known as Ogaden Region. The estimated 500 al-Shabaab […]
    Solomon
  • IPIS Briefing September 2021 – Ethiopia-Tigray Conflict 2021-10-30
    Source: IPIS Briefing September 2021 The IPIS briefing offers a selection of articles, news and updates on natural resources, armed conflict, Business & Human Rights and arms trade. Every month, an editorial and related publications shed a light on a specific topic in IPIS’ areas of research. State-Sponsored Cover-Up of the War on Tigray | September 30, 2021 […]
    Solomon
  • IPIS Briefing August 2021 – Ethiopia-Tigray Conflict 2021-09-19
    Source: IPIS Briefing August 2021 The IPIS briefing offers a selection of articles, news and updates on natural resources, armed conflict, Business & Human Rights and arms trade. Every month, an editorial and related publications shed a light on a specific topic in IPIS’ areas of research. U.S. Response To The Human Rights Crisis In Ethiopia’s […]
    Solomon
  • IPIS Briefing June/July 2021 – Ethiopia-Tigray Conflict 2021-09-19
    Source: IPIS Briefing June/July 2021 The IPIS briefing offers a selection of articles, news and updates on natural resources, armed conflict, Business & Human Rights and arms trade. Every month, an editorial and related publications shed a light on a specific topic in IPIS’ areas of research.  Ethiopia accuses international community of ‘double standards’ in Tigray […]
    Solomon
  • IPIS Briefing May 2021 – Ethiopia-Tigray Conflict 2021-06-08
    Source: IPIS Briefing May 2021: “Ethiopia Tigray crisis – Warnings of genocide and famine” The IPIS briefing offers a selection of articles, news and updates on natural resources, armed conflict, Business & Human Rights and arms trade. Every month, an editorial and related publications shed a light on a specific topic in IPIS’ areas of research. […]
    Solomon
  • Ethiopia: Contemplating Elections and the Prospects for Peaceful Reform 2021-05-14
    Source: USIP  April 29, 2021 |  Amid ongoing violence across the country, the vote may offer opportunities to support political dialogue and decrease polarization. Ethiopia is approaching parliamentary elections on June 5. This will be the first vote since the process of reform launched in 2018 by Prime Minister Abiy Ahmed, and the stakes are […]
    Solomon
  • IPIS Briefing April 2021 – Ethiopia-Tigray Conflict 2021-05-14
    Source: IPIS Briefing April 2021: “In Tigray, Sexual Violence Has Become A Weapon Of War” The IPIS briefing offers a selection of articles, news and updates on natural resources, armed conflict, Business & Human Rights and arms trade. Every month, an editorial and related publications shed a light on a specific topic in IPIS’ areas […]
    Solomon
  • IPIS Briefing March 2021 – Ethiopia-Tigray Conflict 2021-04-10
    Source: IPIS Briefing March 2021 Ethiopian police arrest 359 for suspected murder and illicit arms trade | 29 March 2021 | Xinhua The Ethiopian Federal Police Commission disclosed the arrest of 359 people on suspicion of murder, illicit arms trade, money laundering and auto theft, the state-affiliated Fana Broadcasting Corporate reported Sunday. Scale of Tigray horror […]
    Solomon
  • FP – The U.N. Must End the Horrors of Ethiopia’s Tigray War 2021-03-08
    Foreign Policy | Recent human rights investigations confirm the atrocities that journalists reported in November. A strong multilateral push can force an Eritrean withdrawal and put the region on the path to peace. In November 2020, as war broke out in Ethiopia’s northern Tigray region, the scale of the suffering was already apparent to anyone […]
    Solomon